

Expected Algebra Questions for Railway Exams

We Exam Pundit Team, has made "BOOST UP PDFS" Series to provide The Best Free PDF Study Materials on All Topics of Reasoning, Quantitative Aptitude, English Section and General awareness section. This Boost Up PDFs brings you questions in different level, Easy, Moderate & Hard, and also in New Pattern Questions. we also providing all the study materials for SSC & RRB exams. Each PDFs contains 50 Questions along with Explanation. For More PDF Visit: pdf.exampundit.in

ELEMENTARY ALGEBRA FOR RRB NTPC EXAMS

1) Find the sum of $m + n$ if $x + 2$ is factor of $x^3 + mx^2 +$	d) 4
nx + 6 and mx + 6	4) If $4x^2 + 16y^2 + 12x + 24y + 18 = 0$ then find the
a) – 5	value of $x^3 - y^4$
b) 5	a) -945/256
c) – 8	b) 945/256
d) 8	c) -455/236
2) Find the factor of the polynomial: $x^3 - 13x^2 + 24x - $	d) 455/236
12.	5) If $8a^3 + 125b^3 + 60a^2b + 150ab^2 = 0$ then find the
a) $x^2 - 12x + 12$	value of a/b
b) $x^2 - 14x + 48$	a) 5/2
c) $x^2 - 12x + 36$	b) 2/5
d) None of the above	c) -5/2
3) If $16p^2 + 4q^2 + 9r^2 - 16pq + 12qr - 24pr = 0$ and $p =$	d) -2/5
- 1 then find the value of 2q + 3r	6) If $x^2 + y^2 + z^2 = xy + yz + zx$ & $x/y = z$, then find the
a) 3	value of x ³ +y ³ +z ³
b) -3	a) 3x ²
c) –4	b) $-2y^2$

Page 1 of 20

exampund Nour Success Pa

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

c) 0	c) 169
d) 1	d) 121
7) The sum and product of two numbers is 54 and	11) Find the value of (5.29 + 3.24 + 8.28)/(5.29 - 3.24)
713. Find the difference between those two numbers.	a) 6.8
a) 8	b) 7.8
b) 6	c) 7.6
c) 7	d) 8.2
d) 9	12) If a = 208, b = 312 and c = 405 then find the value
8) If $x + y + z = 21$ then the maximum value of $(x - x)$	of $a^3 + b^3 + c^3 - 3abc/(a^2 + b^2 + c^2 - ab - bc - ca)$
6)(y + 7)(z - 4) is	a) 725
a) 343	b) 1
b) 216	c) 625
c) 125	d) 925
d) Can't be determined	13) If $(y - x)/(y + x) = 2$, then find the value of y in
9) If $x^2 + 1/x^2 = 7$ then find the value of $x^3 + 1/x^3$ (x>0)	terms of x
a) 15	a) -2x
b) 14	b) 2x
c) 18	c) -3x
d) 16	d) None of the above
10) If x - \sqrt{x} = 132 then find the value of x	14) If $x = 9 - 4\sqrt{5}$ then find the value of $\sqrt{x+1/\sqrt{x}}$
a) 144	a) 1
b) 196	b) 2√5
	Page 2 of 20

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

c) 3√5	c) 2
d) 4√5	d) 8
15) If $p + q + 2 = 0$ then find the value of $p^3+q^3+8-6pq$	19) If $(a + b - c)^2 = 16(a - c) + (b + c - a)^2$ then find the value of b
a) 24	
b) 36	a) 8
c) 0	b) 16
d) 42	c) 12
16) If $xy = 0$ and $x/y = 1/2$, then find the value of	d) 4
$(x^3+y^3)/(x^2+y^2)$	20) Find the quadratic equation whose roots are 1/p
a) 0	and 1/q
b) 3x	a) $pqx^2 - (p+q)x + 1 = 0$
c) 1	a) $pqx^{2} - (p + q)x + 1 = 0$ b) $x^{2} - (p + q)x + 1/pq = 0$ C) $pqx^{2} - (p + q)x + 1/pq = 0$
d) 3y	C) $pqx^2 - (p+q)x + 1/pq = 0$
17) If $x + 4/x = 4$, then find the value of $x^5 + 1/x^3$	d) None of the above
a) 257/8	21) Find the sum of the factors of the equation $2x^2$ –
	$7\mathbf{x} + 3 = 0$
b) 235/8	a) 7
c) 247/7	b) -7
d) 247/6	c) $3x - 4$
18) If the roots of the quadratic equation $3x^2 - 6x + p = 0$ are real and equal then find the value of p.	d) 2x – 6
	22) If A and B are positive roots of quadratic
a) 4	equation and $(A + B)^2 = 729$ and $(A - B)^2 = 225$, then
b) 3	find the quadratic equation whose roots are A and B
Subscribe The Xpress Video Course & Mo	Page 3 of 20 ock Test Package for Bank & Insurance Exams

Expected Algebra Questions for Railway Exams

a) $x^2 - 27x + 126$	26) If $p + (1/p) + 2 = 0$ then find the value of $(p + 1/p) + 1 = 0$
b) $x^2 - 24x + 144$	$(2)^{2}+1/(p+2)^{4}$
c) $x^2 - 28x + 192$	a) 12
d) None of the above	b) –12
23) If $x + 1/x = \sqrt{3}$, then find the value of $x^6 + 1/x^{12}$	c) 2
a) 2	d) –2
b) -2	27) If x - $1/x = 7$ then find the value of $x^2 + 1/x^2$
c) 0	a) 51
d) √3	b) 47
24) If $a + b + c + d = 2$ then find the maximum value	c) 0
of $(ab + bc + cd + da)$	d) 2
a) 12	28) If 7p + 1/6p = $\sqrt{5}$ then find the value of $49p^2$ +
b) 1	$(1/36p^2) + 1$
c) -1	a) 11/3
d) 14	b) 5
25) If $x + (1/(x + 1)) = 1$, then find the value of	c) 13/3
$(x+1)^3+1/(x+1)^7$	d) 0
a) 57/13	29) If $x + 1/4x = 6$ then find the value of $16x^2 + 1/x^2$
b) 54/15	a) 124
c) 2	b) 576
d) 0	c) 568
	d) 128
	Page 4 of 20

Expected Algebra Questions for Railway Exams

30) Solve: $2^{16} - 255(2^8 + 1)$	34) If $a + b = 4$ and $ab = 1$ then find the value of $(a^2 + b^2)$
a) 1	$ab + b^2)/(a^2 - ab + b^2)$
b) -12234	a) -7/6
c) -2346s	b) 7/6
d) None of the above	c) -15/13
31) Solve: [(a - b)/(a + b)] – [(a + b)/(a – b)]	d) 15/13
a) $4ab/(a^2 - b^2)$	35) If $a^3 - b^3 = 26$ and $(a + b)^2 = 13 + ab$, then find the value of $(a - b)$
b) 0	a) 1
c) $-4ab/(a^2 - b^2)$	b) 2
d) $2(a^2+b^2)/(a^2-b^2)$	c) -2
32) Solve: $[(\sqrt{6}+1)/(\sqrt{6}-1)] + [(\sqrt{6}-1)/(\sqrt{6}+1)]$	d) 0
a) -12/5	36) If p = $\sqrt{5}$ + (1/ $\sqrt{5}$) and q = $\sqrt{5}$ - (1/ $\sqrt{5}$) then find the
b) 12/5	value of $p^3 + q^3$
c) -14/5	a) 47/√5
d) 14/5	b) 46/√5
33) If x = $(1 + \sqrt{2})/(1 - \sqrt{2})$ and y = $(1 - \sqrt{2})/(1 + \sqrt{2})$	c) 57/√5
then find the value of $x/y - y/x$	d) 56/√5
a) -24√2	37) If $a + b = -c$, then find the value of $a^3 + b^3 + c^3 - c^3$
b) 24√2	3abc
c) 12√2	a) 0
d) -12√2	b) 6abc

Page 5 of 20

exampundit Your Success Partner

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

c) -3abc	a) 12
d) -1	b) 15
38) Simplify: $(x^2 + 8x + 16)/(x^2 + 6x + 8)$	c) 0
a) $(x + 4)/(x + 3)$	d) 13
b) $(x + 6)/(x + 3)$	42) Find the remainder when $x^4 - 2x^3 + 3x^2 - 5x - 8$ is
c) $(x + 4)/(x + 2)$	divided by x – 2
d) None of the above	a) 0
39) If a and b are non-zero rational unequal numbers,	b) -6
then	c) 3
$[(a - b)^2 - (a + b)^2]/a^2b - ab^2$ is equal to	d) - 4
a) $ab/(a - b)$	43) If $x^2 - 3x - 1 = 0$ then find the value of $x^3 - 1/x^3$
b) -4/(a – b)	a) 36
c) 0	b) -18
d) $-1/(a - b)$	c) 18
40) If $a + b + c = 10$, $a^2 + b^2 + c^2 = 64$ and $1/a + 1/b + 1/b + 1/a + 1/b + 1/a + $	d) 0
1/c = 2 then find the value of abc	44) If $x + y = 12$ and $xy = 11$ then find $x^2 - y^2$
a) 6	a) 64
b) $ab + bc + ca$	b) 56
c) abc	c) 110
d) 9	d) 120
41) If $a^4 - b^4 = 65$ and $a^2 - b^2 = 5$ then find the value of $a^2 + b^2$	45) If $x - 1/x = 3$ then find the value of $x^2 + 1/x^2$

Page 6 of 20

exampundit Your Success Partner

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

a) 13	a) 0
b) 15	b) ab
c) 11	c) a + b
d) 14	d) – 1
46) If $x^2 + 1/x^2 = \sqrt{3}$, then find the value of $x^{36} + 1/x^{24}$	49) If x = 11 + 6 $\sqrt{2}$, then find the value of \sqrt{x} + 1/ \sqrt{x}
a) 3	a) 4
b) -1	b) $3 + 4\sqrt{2}$ c) $(24 + 6\sqrt{2})/7$
c) 2	c) $(24 + 6\sqrt{2})/7$
d) 0	d) 0
47) If $x^3 = -1$ then find the value of $x^{54} + x^{51}$	50) If a (2 - $\sqrt{3}$) = b(2 + $\sqrt{3}$) = 1 then find the value of
a) 2	1/a + 1/b
b) 0	a) 5
c) – 2	b) 4
d) 4	c) 0
48) If $a/b = 1 - b/a$ then find the value of $a^3 + b^3$	d) -1

ANSWERS

www.exampundit.in pdf.exa

pdf.exampundit.in

Expected Algebra Questions for Railway Exams

1) Answer: D

Solution:

Consider the expressions as f(x) and g(x) respectively

 $f(x) = x^3 + mx^2 + nx + 6$ And, g(x) = mx + 6

Since, x + 2 is factor of $x^3 + mx^2 + nx + 6$ and mx + 6

f(x) = 0 and g(x) = 0

Then for x = -2,

 $f(-2) = (-2)^3 + m(-2)^2 + n(-2) + 6 = 0$

4m-2n = 2 --- (1)

g(-2) = -2m + 6 = 0

m = 3

Put the value of m in (1)

(1) => 12 - 2n = 2

N = 5

M + n = 8

2) Answer: A

Solution:

 $= x^{3} - 13x^{2} + 24x - 12$ $= x^{3} - x^{2} - 12x^{2} + 12x + 12x - 12$

 $= x^{2}(x-1)-12x(x-1)+12(x-1)$

$= (x-1)(x^2-12x+12)$

Therefore, $(x^2 - 12x + 12)$ is a factor of the given polynomial.

3) Answer: C

Solution:

$$16p^2 + 4q^2 + 9r^2 - 16pq + 12qr - 24pr = 0$$

Comparing the above expression with the algebraic identity

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$$

As terms containing p is negative then p is negative

$$(-4p)^{2} + (2q)^{2} + (3r)^{2} + 2(-4p)(2q) + 2(2q)(3r) + 2(-4p)(3r) = 0$$

$$(-4p+2q+3r)^{2} = 0$$

$$2q + 3r = 4p$$

Since p = -1,

$$2q + 3r = -4$$

4) Answer: A
Solution:

$$4x^{2} + 16y^{2} + 12x + 24y + 18 = 0$$

$$4x^{2} + 12x + 9 + 16y^{2} + 24y + 9 = 0$$

$$(2x + 3)^{2} + (4y + 3)^{2} = 0$$

The above expression is 0 only when both terms are

Page 8 of 20

0

Expected Algebra Questions for Railway Exams

2x + 3 = 0;	Given: $x^2 + y^2 + z^2 = xy + yz + zx$
4y + 3 = 0	(1) => $x^{3} + y^{3} + z^{3} - 3xyz = 0$ $x^{3} + y^{3} + z^{3} = 3xyz (2)$
X = -3/2, y = -3/4	$x^{3} + y^{3} + z^{3} = 3xyz (2)$
$x^3 = -27/8$	Since $x/y = z$
$y^4 = 81/256$	$(2) => x^3 + y^3 + z^3 = 3x^2$
$x^3 - y^4 = -27/8 - 81/256$	7) Answer: A
= (-864 - 81)/256 = -945/256	Solution:
5) Answer: C	The given question can be expressed in the form of quadratic equation
Solution:	
$8a^3 + 125b^3 + 60a^2b + 150ab^2 = 0$	As, x^2 - (sum of the terms) + product of the terms =0
The above expression is of the form	$x^2 - 54x + 713 = 0$
$a^{3} + b^{3} + 3a^{2}b + 3ab^{2} = (a + b)^{3}$	Factors of the above expression will be the required numbers
$(2a)^{3} + (5b)^{3} + 3(2a)^{2}(5b) + 3(2a)(5b)^{2} = 0$	On solving the above quadratic equation
$(2a + 5b)^3 = 0$	$x^2 - 31x - 23x + 713 = 0$
2a + 5b = 0	x (x - 31) - 23 (x - 31) = 0
2a = -5b	x (x - 31) - 23 (x - 31) = 0 x - 31 = 0; x - 23 = 0
a/b = -5/2	The numbers are 23, 31
6) Answer: A	Difference between the two number $= 31 - 23 = 8$
Solution:	Alternative Method
As, $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) (1)$	$(x-y)^2 = x^2 + y^2 - 2xy$ $(x-y)^2 = x^2 + y^2 - 2xy + 2xy - 2xy$
	$(x-y)^2 = x^2 + y^2 - 2xy + 2xy - 2xy$

Page 9 of 20

Expected Algebra Questions for Railway Exams

$(x-y)^2 = (x+y)^2 - 4xy$	$x^2 + 1/x^2 + 2 = 7 + 2$
$(x-y)^2 = 54^2 - 4*713$	$\left(x+1/x\right)^2=9$
$(x-y)^2 = 2916 - 2852 = 64$	X + 1/x = 3 (As x > 0, So - 3 is neglected)
x-y=8	$x^{3}+1/x^{3}=(x+1/x)^{3}-3(x)(1/x)(x+1/x)$
	$x^{3} + 1/x^{3} = 3^{3} - 3(3) = 18$
8) Answer: B	10) Answer: A
Solution:	Solution:
(x-6)(y+7)(z-4) is maximum, only when $(x-6) = (y-6)(y-6)$	$X - \sqrt{x} = 132$
(+7) = (z - 4)	$X - 132 = \sqrt{x}$
Let $(x - 6) = (y + 7) = (z - 4) = k$	Squaring on both sides
X = k + 6	$x^2 - 264x + 17424 = x$
Y = k - 7	$x^2 - 265x + 17424 = 0$
Z = k + 4	(x - 121)(x - 144) = 0
K + 6 + k - 7 + k + 4 = 21	X = 121,144
3k + 3 = 21	By applying the values of x,
k = 6	For $x = 121$
$(x-6)(y+7)(z-4) = k^{3}$ (since each term is equal to k)	121 – 11 ≠ 132
$=6^3=216$	For $x = 144$
9) Answer: C	144 - 12 = 132
Solution:	So value of $x = 144$
$x^2 + 1/x^2 = 7$	144-√144=132

Page 10 of 20

exampund Nour Success Pa

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

144-12=132	Solution:
(or)	(y-x)/(y+x) = 2/1
By applying the options, one can find the answer	By componendo and dividendo method
11) Answer: D	2y/(-2x) = 3/(1)
Solution:	-y/x = 3/1
= (5.29+3.24+8.28)/(5.29-3.24)	Y = -3x
Numerator and denominator is of the form (a^2+b^2+2ab)	(or)
and (a^2-b^2) respectively	(y-x)/(y+x) = 2
$= (2.3^2 + 1.8^2 + 2(2.3^*1.8))/(2.3^2 - 1.8^2)$	(y-x)/(y+x) = 2 Y - x = 2(y + x)
$= (2.3+1.8)^2 / (2.3+1.8)(2.3-1.8)$	$\mathbf{Y} - \mathbf{x} = 2\mathbf{y} + 2\mathbf{x}$
=(2.3+1.8)/0.5	-y = 3x
=4.1/0.5=8.2	$\mathbf{Y} = -3\mathbf{x}$
12) Answer: D	14) Answer: B
Solution:	Solution:
$=a^{3}+b^{3}+c^{3}-3abc/(a^{2}+b^{2}+c^{2}-ab-bc-ca)$	$=\sqrt{x+1}/\sqrt{x}$
As, $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$	Squaring the above expression
$= (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)/(a^{2} + b^{2} + c^{2} - ab$	$(\sqrt{x+1}/\sqrt{x})^2 = x+1/x + 2(1)$
-bc - ca	$X = 9 - 4\sqrt{5}$
= a + b + c	$1/x = 1/(9 - 4\sqrt{5})$
= 208 + 312 + 405 = 925	My taking complex conjugate
13) Answer: C	$1/x = (9+4\sqrt{5})/(81-80) = 9+4\sqrt{5}$

Page 11 of 20

exampundit Hour Success Partner

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

(1)=> $(\sqrt{x}+1/\sqrt{x})^2 = 9 - 4\sqrt{5} + 9 + 4\sqrt{5} + 2 = 20$	Put $xy = 0$
$\sqrt{x+1}/\sqrt{x} = \sqrt{20} = 2\sqrt{5}$	$(x^{3} + y^{3})/(x^{2} + y^{2}) = x + y (1)$
Another Method:	Since, $y = 2x$
$X = 9 - 4\sqrt{5} = 5 + 4 - 2(2)(\sqrt{5}) = (\sqrt{5})^2 + 2^2 - 2(2)(\sqrt{5})$	$(1) => (x^3 + y^3)/(x^2 + y^2) = 3x$
The above expression is of the form, $(a + b)^2 = a^2 + b^2 + 2ab$	17) Answer: A
$(\sqrt{5})^2 + 2^2 - 2(2)(\sqrt{5}) = (2 + \sqrt{5})^2$	Solution:
$\sqrt{x} = 2 + \sqrt{5}$	X + 4/x = 4
$1/\sqrt{x} = 1/2 + \sqrt{5}$	$x^2 - 4x + 4 = 0$
Taking complex conjugate	$(\mathbf{x}-2)^2 = 0$
$1/\sqrt{x} = (2-\sqrt{5})/(2+\sqrt{5})(2-\sqrt{5}) = (2-\sqrt{5})/(-1)$	X = 2
$\sqrt{x+1}/\sqrt{x} = 2+\sqrt{5} - 2+\sqrt{5} = 2\sqrt{5}$	$x^5 + 1/x^3 = 2^5 + 1/2^3$
15) Answer: C	= 32 + 1/8
Solution:	=(256+1)/8
This expression $(p^3 + q^3 + 8 - 6pq)$ can be rewritten as,	= 257/8
$= p^{3} + q^{3} + 2^{3} - 3(2pq)$	18) Answer: B
If $a + b + c = 0$, then $a^3 + b^3 + c^3 - 3abc = 0$	Solution:
Since, $p + q + 2 = 0$ then $p^3 + q^3 + 8 - 6pq = 0$	If the roots of the quadratic equation are real and equal
16) Answer: B	then
Solution:	$b^2 - 4ac = 0 (1)$
$=(x^{3}+y^{3})/(x^{2}+y^{2})$	Then in the given quadratic equation $3x^2 - 6x + p = 0$
$= (x + y)(x^2 - xy + y^2)/(x^2 + y^2)$	a = 3, b = -6, c = p

Page 12 of 20

www.exampundit.inpdf.exampundit.inExpected Algebra Questions for Railway Exams

$(1) = > (-6)^2 - 4(3)(p) = 0$	2x(x-3) - (x-3) = 0
36 - 12p = 0	(2x-1)(x-3) = 0
P = 3	Therefore the factors are $(2x - 1)$ and $(x - 3)$
19) Answer: D	Sum of the factors = $2x - 1 + x - 3 = 3x - 4$
Solution:	22) Answer: A
$(a + b - c)^{2} = 16(b - c) + (b + c - a)^{2}$	Solution:
$a^{2} + b^{2} + c^{2} + 2ab - 2bc - 2ca = 16(b - c) + a^{2} + b^{2} + c^{2} - b^{2}$	The general form of quadratic equation:
2ab + 2bc - 2ca	x^2 - (sum of the roots)x + product of the roots = 0
4b(a-c) = 16(a-c)	Since roots are A and B
B = 4	Sum of the roots = $A + B$
20) Answer: A	Product of roots = AB
Solution:	$(A+B)^2 = 729$
The general form of quadratic equation:	$A+B = \pm 27$
x^2 - (sum of the roots)x + product of the roots = 0	Since A and B are positive roots A + B should be
$x^2 - (1/p + 1/q)x + 1/pq = 0$	positive which is equal to 27
x^{2} - ((p + q)/pq)x + 1/pq = 0	A + B = 27 - (1)
$pqx^2 - (p+q)x + 1 = 0$ is the required equation	$(A - B)^2 = 225$
21) Answer: C	$A - B = \pm 15$
Solution:	A - B = 15 - (2)
$2x^2 - 7x + 3 = 0$	On solving (1) and (2)
$2x^2 - 6x - x + 3 = 0$	A = 21 and B = 6

Page 13 of 20

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

The required quadratic equation	(x + 1) + 1/(x + 1) = 2
$x^2 - 27x + 126 = 0$	The above expression is of the form $a + 1/a = 2$
23) Answer: C	a = 1 satisfies the above expression
Solution:	Since $a = x + 1$, $x = 0$
$X + 1/x = \sqrt{3}$	Therefore, $(x + 1)^3 + 1/(x + 1)^7 = 2$
Cubing on both sides	26) Answer: C
$x^{3} + 1/x^{3} + 3(x)(1/x)(x+1/x) = 3\sqrt{3}$	Solution:
$x^3 + 1/x^3 + 3\sqrt{3} = 3\sqrt{3}$	P + 1/p + 2 = 0
$x^3 + 1/x^3 = 0$	P + 1/p = -2 (1)
$x^6 = -1$	$p^2 + 2p + 1 = 0$
$x^6 + 1/x^{12} = -1 + 1/(-1)^2 = 0$	$P + 1/p + 2 = 0$ $P + 1/p = -2 (1)$ $p^{2} + 2p + 1 = 0$ $(p + 1)^{2} = 0$
24) Answer: B	P = -1
Solution:	(Or) by analyzing the expression (1), we can directly
a + b + c + d = 2	conclude that p=-1
To get the maximum all a, b, c and d should be equal	$(p+2)^{2} + 1/(p+2)^{4} = (1)^{2} + 1/(1)^{4} = 2$
Therefore, $a = b = c = d = 1/2$	27) Answer: A
(ab + bc + cd + da) = (1/4 + 1/4 + 1/4 + 1/4) = 1	Solution:
25) Answer: C	$(x - 1/x)^2 = x^2 + 1/x^2 - 2(x)(1/x)$
Solution:	$(x - 1/x)^{2} = x^{2} + 1/x^{2} - 2(x)(1/x)$ $x^{2} + 1/x^{2} = (x - 1/x)^{2} + 2$ $x^{2} + 1/x^{2} = 49 + 2 = 51$
X + (1/(x + 1)) = 1	$x^2 + 1/x^2 = 49 + 2 = 51$
Adding 1 on both sides	28) Answer: A
	Page 14 of

Page 14 of 20

Expected Algebra Questions for Railway Exams

Solution:	$(1) \Longrightarrow 2^{16} - (2^8 - 1) (2^8 + 1)$
$7p + 1/6p = \sqrt{5}$	$(1) \Longrightarrow 2^{16} - (2^8 - 1) (2^8 + 1)$ $= 2^{16} - (2^8 - 1) (2^8 + 1) - \dots (2)$
Squaring on both sides	Apply $a^2-b^2 = (a + b) (a - b)$ for $(2^8 - 1) (2^8 + 1)$
$(7p + 1/6p)^2 = 5$	$(2) => 2^{16} - (2^{16} - 1)$
$49p^2 + (1/36p^2) + 7/3 = 5$	= 1
$49p^2 + (1/36p^2) + 3/3 + 4/3 = 5$	31) Answer: C
$49p^2 + (1/36p^2) + 1 = 5 - 4/3$	Solution:
$49p^2 + (1/36p^2) + 1 = 11/3$	= (a - b)/(a + b) - (a + b)/(a - b)
29) Answer: C	$= [(a-b)^2 - (a+b)^2]/[(a+b)(a-b)]$
Solution:	$= [a^{2} + b^{2} - 2ab - a^{2} - b^{2} - 2ab]/[a^{2} - b^{2}]$
x + 1/4x = 6	$= -4ab/(a^2 - b^2)$
Multiply by 4 on both sides	32) Answer: D
4x + 1/x = 24	Solution:
Squaring on both sides	$= \left[(\sqrt{6} + 1)/(\sqrt{6} - 1) \right] + \left[(\sqrt{6} - 1)/(\sqrt{6} + 1) \right]$
$(4x + 1/x)^2 = 24^2$	$= [(\sqrt{6}+1)^2 + (\sqrt{6}-1)^2]/[(\sqrt{6})^2 - 1^2]$
$16x^2 + 1/x^2 + 2(4x)(1/x) = 576$	$= (6+1+2\sqrt{6}+6+1-2\sqrt{6})/(6-1)$
$16x^2 + 1/x^2 = 568$	= 14/5
30) Answer: A	33) Answer: B
Solution:	Solution:
$=2^{16} - 255(2^8 + 1) - \dots (1)$	= x/y - y/x
255 can be rewritten as $256 - 1 = 2^8 - 1$	$=(x^2-y^2)/xy$ (1)

Page 15 of 20

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

$X = (1+\sqrt{2})/(1-\sqrt{2})$	Given:	
Taking complex conjugate	$a^3 - b^3 = 26$	
$X = (1+\sqrt{2})^2/((1+\sqrt{2})(1-\sqrt{2})) = (1+2+2\sqrt{2})/(-1)$	$(a + b)^{2} = 13 + ab => a^{2} + b^{2} + 2ab = 13 + ab$	
$X = -(3 + 2\sqrt{2})$	$=>a^2 + b^2 + ab = 13$	
$x^{2} = [-(3 + 2\sqrt{2})]^{2} = 9 + 8 + 12\sqrt{2} = 17 + 12\sqrt{2}$	As we know that,	
$y = (1 - \sqrt{2})/(1 + \sqrt{2})$	$a^{3}-b^{3} = (a-b)(a^{2}+b^{2}+ab)$	
Taking complex conjugate	Substitute the values in above expression	
$y = [(1 - \sqrt{2})(1 - \sqrt{2})]/[(1 + \sqrt{2})(1 - \sqrt{2})] = (1 - \sqrt{2})^2/(1 - 2)$	26 = (a - b)(13)	
$=(1+2-2\sqrt{2})/(-1)$	a - b = 2	
$y = 2\sqrt{2} - 3$	36) Answer: D	
$y^2 = (2\sqrt{2} - 3)^2 = 8 + 9 - 12\sqrt{2} = 17 - 12\sqrt{2}$	Solution:	
$xy = -(2\sqrt{2} + 3)(2\sqrt{2} - 3) = -(8 - 9) = 1$	As we know the identity, $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	
$(1) = (17 + 12\sqrt{2} - 17 + 12\sqrt{2})/1 = 24\sqrt{2}$	P + q = $\sqrt{5}$ + (1/ $\sqrt{5}$) + $\sqrt{5}$ - (1/ $\sqrt{5}$) = 2 $\sqrt{5}$	
34) Answer: D	Applying $(a + b)(a - b) = a^2 - b^2$	
$=(a^{2}+ab+b^{2})/(a^{2}-ab+b^{2})$	Pq = $(\sqrt{5} + 1/\sqrt{5})(\sqrt{5} - 1/\sqrt{5}) = 5 - 1/5 = 24/5 \rightarrow p^2 + q^2 =$	
By using algebraic identities the numerator and	$(p+q)^2-2pq$	
denominator becomes	Substitute the values of $(p + q)$ and pq in above	
$= [(a+b)^2 - ab]/[(a+b)^2 - 3ab] (1)$	expression	
Put the values of $a + b$ and ab	$p^2 + q^2 = (2\sqrt{5})^2 - 48/5 = 52/5$	
$(1) => [4^2 - 1]/[4^2 - 3] = 15/13$	Then,	
35) Answer: B	$p^{3} + q^{3} = (p + q)(p^{2} - pq + q^{2})$ $p^{3} + q^{3} = 2\sqrt{5}(52/5 - 24/5) = 2\sqrt{5}(28/5) = 56/\sqrt{5}$ Page 16 of 20	
Solution:	$p^{3} + q^{3} = 2\sqrt{5(52/5 - 24/5)} = 2\sqrt{5(28/5)} = 56/\sqrt{5}$	
Page 16 of 20 Subscribe The Xpress Video Course & Mock Test Package for Bank & Insurance Exams		

www.exampundit.in

Expected Algebra Questions for Railway Exams

pdf.exampundit.in

37) Answer: A 40) Answer: D Solution: Solution: As, $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc)$ 1/a + 1/b + 1/c = 2-ca)(ab + bc + ca)/abc = 2 -----(1) Put the value of a + b = -c in above expression abc = (ab + bc + ca)/2Then, $a^3 + b^3 + c^3 - 3abc = (-c + c)(a^2 + b^2 + c^2 - ab - bc)$ As. $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$ -ca)Substitute the values of a + b + c and $a^2+b^2+c^2$ in above $a^{3} + b^{3} + c^{3} - 3abc = 0$ expression 38) Answer: C Then it becomes, Solution: 100 = 64 + 2(ab + bc + ca) $=(x^{2}+8x+16)/(x^{2}+6x+8)$ ------(1) (ab + bc + ca) = 18The factors of $x^2 + 8x + 16$ is (x + 4)(x + 4) $(1) \Rightarrow 18/abc = 2$ The factors of $x^2 + 6x + 8$ is (x + 4)(x + 2)abc=9 Substituting equ.(1) => (x + 4)(x + 4)/(x + 4)(x + 2) = (x + 4)(x + 4)(x + 2) = (x + 4)(x +41) Answer: D (+ 4)/(x + 2)Solution: Thus, (x + 4)/(x + 2) is the required answer Based on algebraic identity, $a^4 - b^4 = (a^2 + b^2)(a^2 - b^2)$ 39) Answer: B $(a^{2} + b^{2}) = (a^{4} - b^{4})/(a^{2} - b^{2}) = 65/5 = 13$ Solution: 42) Answer: B $= [(a-b)^2 - (a+b)^2]/a^2b - ab^2$ Solution: $= (a^{2} + b^{2} - 2ab - a^{2} - b^{2} - 2ab]/ab(a - b)$ To find the remainder value, put x = 2 in the given =-4ab/ab(a-b)expression = -4/(a - b) $f(x) = x^4 - 2x^3 + 3x^2 - 5x - 8$

Page 17 of 20

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

$f(2) = 2^4 - 2(2)^3 + 3(2)^2 - 5(2) - 8$	$3^2 = x^2 + 1/x^2 - 2$
= 16 - 16 + 12 - 10 - 8 = -6	$x^2 + 1/x^2 = 11$
43) Answer: A	46) Answer: D
Solution:	Solution:
$x^2 - 3x - 1 = 0$	$x^2 + 1/x^2 = \sqrt{3}$
\div by x => x - 3 - 1/x = 0	Cubing on both sides
X - 1/x = 3	$(x^2 + 1/x^2)^3 = (\sqrt{3})^3$
By using algebraic identity $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$	$x^{6} + 1/x^{6} + 3(x^{2})(1/x^{2})(x^{2}+1/x^{2}) = 3\sqrt{3}$
$(x - 1/x)^3 = x^3 - 1/x^3 - 3(x)(1/x)(x - 1/x)$	$x^6 + 1/x^6 = 3\sqrt{3} - 3\sqrt{3} = 0$
$3^3 = x^3 - 1/x^3 - 3(3)$	$x^{12}+1=0$
$x^3 - 1/x^3 = 27 + 9 = 36$	$x^{12} = -1$
44) Answer: D	$=>x^{36} + 1/x^{24} = (x^{12})^3 + 1/(x^{12})^2 = (-1)^3 + 1/(-1)^2 = 0$
44) Answer: D Solution:	=> x^{36} + 1/ x^{24} = (x^{12}) ³ + 1/(x^{12}) ² = (-1) ³ +1/(-1) ² = 0 47) Answer: B
Solution:	47) Answer: B
Solution: As, $x^2 - y^2 = (x + y)(x - y)$ (1)	47) Answer: B Solution:
Solution: As, $x^2 - y^2 = (x + y)(x - y)$ (1) By using identity $(x - y)^2 = (x + y)^2 - 4xy$	47) Answer: B Solution: $x^{54} + x^{51} = x^{51}(x^3 + 1) - \dots (1)$
Solution: As, $x^2 - y^2 = (x + y)(x - y)$ (1) By using identity $(x - y)^2 = (x + y)^2 - 4xy$ $(x - y)^2 = 12^2 - 4(11) = 144 - 44 = 100$	47) Answer: B Solution: $x^{54} + x^{51} = x^{51}(x^3 + 1) - \dots (1)$ Substitute the value of x^3 in (1)
Solution: As, $x^2 - y^2 = (x + y)(x - y) - (1)$ By using identity $(x - y)^2 = (x + y)^2 - 4xy$ $(x - y)^2 = 12^2 - 4(11) = 144 - 44 = 100$ X - y = 10	47) Answer: B Solution: $x^{54} + x^{51} = x^{51}(x^3 + 1) - (1)$ Substitute the value of x^3 in (1) $(1) => x^{54} + x^{51} = 0$
Solution: As, $x^2 - y^2 = (x + y)(x - y) - (1)$ By using identity $(x - y)^2 = (x + y)^2 - 4xy$ $(x - y)^2 = 12^2 - 4(11) = 144 - 44 = 100$ X - y = 10 $(1) => x^2 - y^2 = 12*10 = 120$	47) Answer: B Solution: $x^{54} + x^{51} = x^{51}(x^3 + 1) - (1)$ Substitute the value of x^3 in (1) $(1) => x^{54} + x^{51} = 0$ 48) Answer: A
Solution: As, $x^2 - y^2 = (x + y)(x - y) - (1)$ By using identity $(x - y)^2 = (x + y)^2 - 4xy$ $(x - y)^2 = 12^2 - 4(11) = 144 - 44 = 100$ X - y = 10 $(1) => x^2 - y^2 = 12*10 = 120$ 45) Answer: C	47) Answer: B Solution: $x^{54} + x^{51} = x^{51}(x^3 + 1) - (1)$ Substitute the value of x^3 in (1) $(1) => x^{54} + x^{51} = 0$ 48) Answer: A Solution:

Page 18 of 20

www.exampundit.in pdf.exampundit.in

Expected Algebra Questions for Railway Exams

The above expression is rewritten as,	$x = (3 + \sqrt{2})^2$ $\sqrt{x} = (3 + \sqrt{2})$
a/b + b/a = 1	$\sqrt{\mathbf{x}} = (3 + \sqrt{2})$
$(a^2 + b^2)/ab = 1$	$1/\sqrt{x} = 1/(3 + \sqrt{2})$
$(a^2 + b^2) = ab$	Taking complex conjugate
As per algebraic identity, $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ (2)	$1/\sqrt{x} = (3 - \sqrt{2})/((3 + \sqrt{2})(3 - \sqrt{2})) = (3 - \sqrt{2})/(9 - 2) = (3 - \sqrt{2})/7$
Substitute the value of $a^2 + b^2$	$\sqrt{x} + \frac{1}{\sqrt{x}} = (3 + \sqrt{2}) + ((3 - \sqrt{2})/7)$ $= (21 + 7\sqrt{2} + 3 - \sqrt{2})/7 = (24 + 6\sqrt{2})/7$
 (2) ⇒ a³ + b³ = (a + b)(ab - ab) = 0 49) Answer: C 	50) Answer: B
Solution:	Solution:
$X = 11 + 6\sqrt{2}$	$a(2 - \sqrt{3}) = b(2 + \sqrt{3}) = 1$
$X = 11 + 6\sqrt{2}$ $X = (9 + 2 + 6\sqrt{2})$	$a(2 - \sqrt{3}) = b(2 + \sqrt{3}) = 1$ This is same as, $a(2 - \sqrt{3}) = 1$ & $b(2 + \sqrt{3}) = 1$
$X = (9 + 2 + 6\sqrt{2})$	This is same as, $a(2 - \sqrt{3}) = 1$ & $b(2 + \sqrt{3}) = 1$

Click Here to Download Important Notes on Indian Polity for SSC & Railway Exams

Page 19 of 20

Subscribe The Xpress Video Course & Mock Test Package for Bank & Insurance Exams

If there are any suggestions/ errors in our PDFs Feel Free to contact us via this email: admin@exampundit.in

Expected Algebra Questions for Railway Exams

Download THE COMPLETE General Science PDF for SSC & Railway Exams

<u>Click Here to Join Our What's App Group & Get Instant Notification on Study</u> <u>Materials & PDFs</u>

<u>Click Here to Join Our Official Telegram Channel</u>